
Schema Matching across Query Interfaces on the

Deep Web

Zhongtian He, Jun Hong, and David Bell

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast, BT7 1NN, UK

{zhe01,j.hong,da.bell}@qub.ac.uk

Abstract. Schema matching is a crucial step in data integration. Many
approaches to schema matching have been proposed so far. Different
types of information about schemas, including structures, linguistic fea-
tures and data types, etc have been used to match attributes between
schemas. Relying on a single aspect of information about schemas for
schema matching is not sufficient. Approaches have been proposed to
combine multiple matchers taking into account different aspects of infor-
mation about schemas. Weights are usually assigned to individual match-
ers so that their match results can be combined taking into account their
different levels of importance. However, these weights have to be manu-
ally generated and are domain-dependent. We propose a new approach
to combining multiple matchers using the Dempster-Shafer theory of ev-
idence, which finds the top-k attribute correspondences of each source
attribute from the target schema. We then make use of some heuristics
to resolve any conflicts between the attribute correspondences of differ-
ent source attributes. Our experimental results show that our approach
is highly effective.

1 Introduction

There are now many searchable databases on the Web. These databases are
accessed through queries formulated on their query interfaces only which are
usually query forms. The query results from these databases are dynamically
generated Web pages in response to form-based queries. The number of such
dynamically generated Web pages is estimated around 500 times the number
of static Web pages on the surface Web [1]. In many domains, users are inter-
ested in obtaining information from multiple sources. Thus, they have to access
different Web databases individually via their query interfaces. For large-scale
data integration over the Deep Web, it is not practical to manually model and
integrate these Web databases. We aim to provide a uniform query interface
that allows users to have uniform access to multiple sources [2]. Users can sub-
mit their queries to the uniform query interface and be responded with a set of
combined results from multiple sources automatically.

Schema matching across query interfaces is a critical step in Web data integra-
tion, which finds attribute correspondences between the uniform query interface

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 51–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

52 Z. He, J. Hong, and D. Bell

and the query interface for a local database. In general, schema matching takes
two schemas as input and produces a set of attribute correspondences between
the two schemas [3, 4]. The problem of schema matching has been extensively
studied [4,5,6,7,8,9,10,11,12,13,14,15,16]. Some of these methods [9,10,12,13,14]
make use of information about schemas, including structures, linguistic features,
data types, value ranges, etc to match attributes between schemas.

Match results from individual matchers are not accurate and certain, because
they rely on individual aspects of information about schemas only, which are
not sufficient for finding attribute correspondences between schemas. Individual
matchers, however can generate some degree of belief on the validity of possible
attribute correspondences.

In addition, sometimes given a source attribute, there might be two or more
attribute correspondences that are not clearly distinguishable from each other
by an individual matcher. For example, a data type matcher may not be able to
distinguish some attribute correspondences for the same source attribute if they
all have the same data type as the source attribute.

Recent research efforts have been focused on combiningmultiplematchers.How-
ever, how to combine different measures is a difficult issue. In the example shown
in Figure 1, when we use a string similarity-based matcher, the similarity value
between “Published Date” and “Publisher” is greater than the one between “Pub-
lished Date” and “Release Date”, while when a semantic similarity-based matcher
is used, the similarity values are the other way around. Current approaches use dif-
ferent strategies to combine matcher-specific similarity values [12].

However, these strategies sometimes do not truly reflect how well two at-
tributes match. Given a pair of attributes, the Max strategy selects the maximal
similarity value among all the similarity values from different matchers as their
similarity value. For example, if one of our matchers is data type-based matcher,
and the attributes, “Publisher” and “Author”, have the same data type, then
the similarity value is 1 which will be chosen as their final similarity value. But
obviously they do not match. On the other hand, the Min strategy selects the

abebooks.com Compman.co.uk

Fig. 1. Two real-world query interfaces on the Web

Schema Matching across Query Interfaces on the Deep Web 53

lowest similarity value. For example, if a string similarity-based matcher is one
of the matchers, the similarity value of “Published Date” and “Release Date” is
very low, but actually they are a right match. The third strategy, Average, treats
all the matchers equally. For instance, if two matchers are string similarity-based
matcher and semantic similarity-based matcher respectively, the average simi-
larity value between “Published Date” and “Publisher” is higher than the one
between “Published Date” and “Release Date”, but we all know that “Published
Date” and “Release Date” is the correct match. It appears that the semantic
similarity-based matcher should have a higher level of importance. The Weighted
strategy is the most popular strategy that calculates a weighted sum of the simi-
larity values of all the individual matchers, where weights correspond to different
levels of importance of the individual matchers. However, assigning weights to
different matchers now becomes an issue. Weights have to be manually generated
and are domain dependent.

To address these issues, we propose a new strategy for combining multiple
matchers. We use four individual matchers to measure the similarity between
attributes, and make use of Dempster-Shafer (DS) theory of evidence to combine
the results from these matchers.

Finally, sometimes two or more different source attributes may have the same
attribute correspondence. In our approach, we keep the top-k matches of each
source attribute. We then use some heuristics to resolve any conflicts between
the matches of different source attributes.

The rest of this paper is organized as follow. Section 2 introduces the Dempster-
Shafer (DS) theory of evidence. Section 3 describes how to use DS theory in
our approach. Section 4 describes how to resolve conflicts of different source at-
tributes. In Section 5, we report our experiments on our prototype using a dataset
which contains the schemas of real-world query interfaces. Section 6 compares our
work with related work. Section 7 concludes the paper.

2 Dempster-Shafer Theory of Evidence (DS)

The DS theory of evidence, sometimes called evidential reasoning [17] or belief
function theory, is a mechanism formalized by Shafer [18] for representing and
reasoning with uncertain, imprecise and incomplete information. It is based on
the modeling of uncertainty in terms of upper and lower probabilities that are
induced by a multi-valued mapping rather than as a single probability value.

Definition 1. Frames of Discernment. A frame of discernment (or simply a
frame), usually denoted as Θ, contains mutually exclusive and exhaustive possible
answers to a question, one and only one of which is true.

In DS theory, a frame of discernment is used to represent a set of possible
answers to a question. For example, a patient has been observed having two
symptoms: “coughing” and “sniveling” and only three types of illness could
have caused these symptoms: “flu”(F),“cold”(C) and “pneumonia”(P). We use
a frame Θ = {F, C, P} to represent these types of illness.

54 Z. He, J. Hong, and D. Bell

Definition 2. Mass functions. A function, m: 2Θ → [0, 1], is called a mass
function on a frame Θ if it satisfies the following two conditions:

m(φ) = 0 (1)
∑

A⊆Θ

m(A) = 1 (2)

where φ is an empty set and A is any subset of Θ.

Given a frame of discernment, Θ, for each source of evidence, a mass function
assigns a mass to every subset of Θ, which represents the degree of belief that one
of the answers in the subset is true, given the source of evidence. For example,
when the patient has been observed having the symptom “coughing”, the degree
of belief that the patient has “flu” or “cold” is 0.6 and the degree of belief that the
patient has “pneumonia” is 0.4, that is m1({C, F}) = 0.6 and m1({P}) = 0.4.
Similarly, with the symptom of “sniveling”, we have another mass function:
m2({F}) = 0.7, m2({C}) = 0.2 and m2({P}) = 0.1.

When more than one mass function is given on the same frame of discernment,
the theory also provides us with Dempster’s combination rule. If m1 and m2

are two mass functions on frame Θ, then m = m1

⊕
m2 is the combined mass

function, where
⊕

means using Dempster’s combination rule, defined as follows:

m(C) =

∑
A

⋂
B=C m1(A)m2(B)

1 − ∑
A

⋂
B=φ m1(A)m2(B)

(3)

In the above example, we combine two mass functions, m1 and m2, to get
m({C})=0.207, m({F})=0.724 and m({P})=0.069. Therefore given the two
symptoms the patient has, it is more likely that he is having “flu”.

3 Combining Multiple Matchers Using DS Theory

Given a source schema and a target schema, our approach combines a set of indi-
vidual matchers using the Dempster-Shafter theory of evidence to produce a set
of attribute correspondences between the two schemas. Our approach consists of
a number of steps: 1. Applies each of the individual matchers to the two given
schemas; 2. Interprets the results from the individual matchers using the DS the-
ory; 3. Combines the results from the individual matchers using the Dempster’s
combination rule to produce the top k attribute correspondences of each source
attribute; 4. Decides on the attribute correspondence of each source attribute
and resolves conflicts between attribute correspondences of two or more source
attributes.

3.1 Individual Matchers

We use four individual matchers, the first three matchers are based on the lin-
guistic features of attribute names and the last matcher uses the data types of
attributes.

Schema Matching across Query Interfaces on the Deep Web 55

Semantic Similarity: We use WordNet1, an ontology database to compute
the semantic similarity between two words. We use the traditional edge count-
ing approach to measuring word similarity. We define similarity between two
words as S(w1, w2) = 1/L, where L is the shortest path in WordNet be-
tween these two words. Suppose that two attribute names have two sets of
words S1 = {w1, w2, ..., wm} and S2 = {w′

1, w
′
2, ..., w

′
n}. We compare the sim-

ilarity values between each word in S1 with every word in S2 and find the
highest semantic similarity value. We then get a similarity value set for S1:
Sim1 = {s1, s2, ..., sm}. Using the same method we get a similarity value set for
S2: Sim2 = {s′1, s′2, ..., s′n}. From these two similarity value sets we calculate the
similarity value between two attribute names S1 and S2 as:

Sim(S1, S2) =
∑m

i=1 si +
∑n

i=1 s′i
m + n

(4)

where m is the number of the words in S1, n is the number of the words in S2.

Edit Distance-Based Matcher: Edit distance is the number of edit operations
necessary to transform one string to another [19]. We define the edit distance-
based string similarity as follows:

simed(w1, w2) =
1

1 + ed(w1, w2)
(5)

where w1 and w2 are two words, ed(w1, w2) is the edit distance between these
two words. Similar to the semantic similarity matcher, we get two similarity
value sets for two attribute names first and then calculate the similarity value
between two attribute names based on the two similarity value sets using the
formula defined in (4).

Jaro Distance: Similar to the edit distance matcher, we use the formula in (4) to
calculate the similarity value between two attribute names, where the similarity
value between two words is calculated using the Jaro distance instead. The Jaro
distance measures the similarity of two strings based on the number and order
of the common characters between them. Given two strings s = a1 · · · ak and
t = b1 · · · bl, a character ai in s is in common with t, if there is a bj = ai in
t such that i − H ≤ j ≤ i + H , where H = min(|s|,|t|)

2 . Let s′ = a′
1 · · · ak′ , be

the characters in s which are in common with t (in the same order they appear
in s) and t′ = b′1 · · · bl′ similarly. We define a transposition for s′andt′ to be a
position i such that a′

i �= b′i. Let Ts,t be half the number of transpositions of s′

and t′. The Jaro similarity metric for s and t is defined as follows [21]:

Jaro(s, t) =
1
3
·
(|s′|
|s| +

|t′|
|t| +

|s′| − Ts′,t′

|s′|
)

(6)

Data Types: As discussed in [8], we define that two data types are compatible if
they are the same or one subsumes another (is-a relationship). Currently we focus
1 http://wordnet.princeton.edu/

56 Z. He, J. Hong, and D. Bell

Fig. 2. Data types and their relationships

only on the data types that are shown in Figure 2. For example, in Figure 2, an
“integer” is a “float”. So we say that their data types are the same or compatible
(incidentally, “null” is compatible to any data type). The similarity value between
two attribute names is 1, if their data types are the same. Otherwise it is 0.

3.2 Interpreting Results from Individual Matchers

Assume that we have a source schema, S = {a1, a2, ..., am}, where ai, for i =
1, 2, ..., m, is a source attribute, and a target schema, T = {b1, b2, ..., bn}, where
bj, for j = 1, 2, ..., n, is a target attribute. For each source attribute, ai, we have a
set of possible correspondences in the target schema {< ai, b1 >, < ai, b2 >, ..., <
ai, bl >}. It is also possible that ai, may have no correspondence in the target
schema at all. We therefore have a frame of discernment for ai, Θ = {< ai, b1 >
, < ai, b2 >, ..., < ai, bl >, < ai, null >}, where < ai, null > represents that there
is no correspondence for ai in the target schema. This frame of discernment
contains an exclusive, exhaustive set of answers (see Definition 1) to the question
of finding an attribute correspondence for ai, in the target schema. One and only
one of these answers is true.

Generating Indistinguishable Subsets of Attribute Correspondences.
For some matchers we cluster Θ into a set of indistinguishable subsets, because
some attribute correspondences may not be distinguishable. For example, if a
source attribute has the same data type with two target attributes, then the two
correspondences cannot be distinguished from each other, so we cluster these
indistinguishable correspondences into a subset.

Generating Mass Distributions on Indistinguishable Subsets. We now
describe how to generate a mass distribution that assigns a mass to an indistin-
guishable subset of Θ, on the basis of the similarity measures on the attribute
correspondences in the subset.

Given an indistinguishable subset of attribute correspondences, we have a
similarity value for each correspondence, which represents how well the two
attributes in the correspondence match according to the criterion used by the
matcher. Suppose the subset is {< ai, bi1 >, < ai, bi2 >, ..., < ai, bil >}, a mass

Schema Matching across Query Interfaces on the Deep Web 57

assigned to the subset is calculated based on the similarity values for all the
attribute correspondences in the subset as follows:

m′(A) = 1 − Π l
j=1(1 − Sim(ai, bij)) (7)

where Sim(ai, bij) is the similarity value for one of the correspondences in the
subset. For the special singleton subset, {< ai, null >}, since we do not have
a similarity value for it by any matcher, the mass assigned to the subset is
calculated as follows:

m′({< ai, null >}) = Π l
j=1(1 − Sim(ai, bij)) (8)

The mass distributed to {< ai, null >}, therefore, represents the degree of be-
lief that none of the target attributes is the attribute correspondence of source
attribute, ai.

DS theory requires that the sum of all masses assigned to every indistinguish-
able subset equals to 1. We scale the mass distribution, m′, by the following
formula:

m(A) =
m′(A)∑

B⊆Θ m′(B)
(9)

where A and B are subsets of Θ. The mass distribution produced by (9) assigns
a mass to every indistinguishable subset of Θ, which represents the degree of
belief by the matcher that the attribute correspondence of the source attribute,
ai, belongs to the subset.

3.3 Combining Mass Distributions from Multiple Matchers

We now have a mass distribution by each of the individual matchers, which
assigns a mass to every indistinguishable subset of Θ. A mass distribution can
be seen as an opinion expressed by a matcher on the degree of belief that the
attribute correspondence of the source attribute belongs to an indistinguishable
subset. Using Dempster’s combination rule, we can take into account different
opinions by different matchers by combining the mass distributions by these
matchers. The mass distribution produced after this is used to select the top k
attribute correspondences of each source attribute.

4 Resolving Conflicts between Attribute Correspondences

We have now the top k attribute correspondences of each source attribute. How-
ever, these attribute correspondences have so far been selected for an individual
source attribute only. There might be conflicts between attribute correspon-
dences of two or more source attributes (ie. the best correspondences of two
different source attributes are the same target attribute). To resolve any conflicts
that may arise between attribute correspondences, the attribute correspon-
dences of source attributes are collectively selected to maximize the sum of all the

58 Z. He, J. Hong, and D. Bell

masses on the attribute correspondence of every source attribute. The algorithm
is given in Algorithm 1.

For example, suppose that both source and target schemas have three at-
tributes, the source attributes are {Author, Publisher, Published Date}, and
the target attributes are {Author, Keywords, Release Date}. We have the top
k (k = 3) correspondences of each source attribute: { m(<Author,Author>)
= 0.88, m(<Author,null>) = 0.11, m(<Author,Keywords>) = 0.01 }, { m(<
Publisher,Author>) = 0.47, m(<Publisher,null>) = 0.40, m(<Publisher, Key-
words>) = 0.13}, { m(<Published Date,Release Date>) = 0.87, m(<Published
Date,null>) = 0.13, m(<Published Date, Author>) = 0.0 }. The top attribute
correspondence of “Author”, <Author,Author>, is in conflict with the top cor-
respondence of “Publisher”, <Publisher,Author>. By using our algorithm, {
<Author,Author>,<Publisher,null>,<Published Date,Release Date> } has the
maximum sum of mass function values.

Algorithm 1. Resolving Conflicts
Input: A set of all the possible combinations of attribute correspondences Ω =
{C|C = {< a1, b

′
1 >, < a2, b

′
2 > ... < am, b′m >}},where < ai, b

′
i >∈ {< ai, bi1 >, <

ai, bi2 >, ..., < ai, bik >} (the top konly correspondences of ai)
Output: A collection of correspondences with the maximum sum of the mass values

of the correspondences for every source attribute
1: Max← 0; Best← null.
2: for each C∈ Ω do
3: Sum = Σm

i=1m(< ai, b
′
i >), where m(< ai, b

′
i >) is the mass function value of

< ai, b
′
i >

4: if Sum > Max then
5: Max← Sum; Best← C;
6: end if
7: end for
8: return Best

5 Experimental Results

5.1 Dataset

To evaluate our approach, we have selected a set of query interfaces on the real-
world websites from the ICQ Query Interfaces dataset at UIUC, which contains
manually extracted schemas of 100 interfaces in 5 different domains: Airfares,
Automobiles, Books, Jobs, and Real Estates. In this paper we have focused on
1:1 matching only, so only 88 interfaces are chosen from the dataset. In each
domain we choose an interface as the source interface, and use others as the
target ones.

5.2 Performance Metrics

We use three metrics: precision, recall, and F-measure [20, 10, 22]. Precision
is the percentage of correct matches over all matches identified by a matcher.

Schema Matching across Query Interfaces on the Deep Web 59

Table 1. The precisions of different matchers

Edit distance Jaro distance Semantic similarity Our matcher

Airfares 83.3% 56.8% 86.4% 92.0%

Automobiles 84.4% 48.1% 93.1% 96.3%

Books 87.0% 48.8% 92.0% 94.4%

Jobs 68.5% 50.0% 71.0% 91.9%

Real Estates 86.8% 52.9% 81.6% 93.8%

Average 82.1% 51.3% 84.8% 93.7%

Recall is the percentage of correct matches by a matcher over all the matches
by domain experts. F-measure is the incorporation of precision and recall. In
our approach the “no match” (“null”) is also an answer to the source attribute.
So it is always possible to find a correspondence to each source attribute, that
is, the number of matches by our approach equals to the number of matches
identified by experts. So in our approach, precision and recall are both the
same, and we use precision only.

5.3 Discussion on Experimental Results

First, for each domain we perform four experiments, we use three individ-
ual matchers: edit distance, Jaro distance and semantic similarity (the data
type matcher cannot be used alone) separately to find matches between the
source and target schemas, and compare their results with our new approach. In
Table 1, we can see that the precisions of individual matchers and our approach.
Our matcher gets an average precision of “93.7%” which is much higher than
individual matchers.

Second, we compare our results with the work in [9], which also uses the
same dataset for their experiments. However, in [9], they not only focus on 1:1
matching but also handle 1:m matching. In their experiments, a 1:m match is
counted as m 1:1 matches. So we can only roughly compare our approach with
their work.

Fig. 3. Precision, recall and K measure of different matchers

60 Z. He, J. Hong, and D. Bell

As we discussed in section 5.2, precision is the same as recall in our exper-
iments. According to the definition of F-measure in [9], F = 2PR

P+R , where P is
precision and R is Recall, the F-measure is also the same as precision. In [9]
they did three experiments, the first one is on automatic matching which used
a weighted strategy to combine multiple matchers and a 0 threshold is used to
select the combined match results. The second experiment is almost the same
as the first one but the threshold is obtained by training. The last one allowed
user interaction. As shown in Figure 3, we can see that without training (learned
threshold), the results of our approach are better. When they use the learned
threshold, their precision is better than ours, but we have higher recall and
F-measure. Finally, when user interactions are allowed in their approach, their
results are better than ours. So we can see, our approach is effective and accurate
for an automatic schema matching across query interfaces without training and
user interaction.

6 Related Work

Many approaches have been proposed for automatic schema matching [9,10,12,
13,14,15,16]. We relate our work to the existing works in two kinds of matching
methods.

First, like in our approach, strategies have also been proposed in some ap-
proaches [10, 12] to combine multiple matchers. Cupid [10] considers linguistic
similarity and structural similarity between elements and uses a weighted for-
mula to combine these two similarities together. The weighted strategy is the
most popular strategy used in combining individual matchers. However, weights
have to be manually generated and are domain dependent.

COMA [12] also does 1:1 matching, and combines individual matchers in a
flexible way. It allows users to tailor match strategies by selecting the match
algorithms and their combination for a given match problem. It also allows
users to provide feedback which can help improve match results. In this system,
several aggregation strategies have been provided for users to choose. They are
Max, Min, Average and Weighted strategies. As we discussed in Section 1,these
strategies are effective in some situations while sometimes they cannot combine
results well, and choosing strategies by users involves human efforts.

In [9], they also used weights to combine multiple matchers. However, they
used clustering to find attribute correspondences across multiple interfaces. A
threshold is required for the combined match results, which needs to be manually
generated and is domain dependent. So this approach also involves human effort.

Second, some approaches [6, 8] do not combine multiple matches. MGS [6]
and DCM [8] depend on the distribution of attributes rather than linguistic
or domain information. Superior to other schema matching approaches, these
approaches can discover synonyms by analyzing the distribution of attributes in
the given schemas. However, they work well only when a large training dataset
is available, and this is not always the case.

Schema Matching across Query Interfaces on the Deep Web 61

7 Conclusions and Future Work

In this paper we proposed a new approach to combining multiple matchers by
using the Dempster-Shafer theory of evidence and presented an algorithm for
resolving the conflicts among the correspondences of different source attributes.
In our approach, different matches are viewed as different sources of evidence,
and mass distributions are defined on the basis of the match results from these
matchers. We use Dempster’s combination rule to combine these mass dustribu-
tions, and choose the top k correspondences of each source attribute. Conflicts
between the correspondences of different source attributes are finally resolved.
We have implemented a prototype and tested it using a large dataset that con-
tains real-world query interfaces in five different domains. The experimental
results demonstrate the feasibility and accuracy of our approach.

We have focused on one-to-one matching between schemas in this paper. In
the near future we will extend our approach to complex matching. There are
more issues on uncertainty in complex matching, such as how many groups the
attributes in a schema should be divided into, and which group should contain
a specific attribute. Using uncertainty theory to address these issues could be
feasible and effective.

References

1. Bergman, M.K.: The deep web: Surfacing hidden value. BrightPlanet (2001)

2. Dragut, E.C., Yu, C.T., Meng, W.: Meaningful labeling of integrated query inter-
faces. In: Proceedings of the 32th International Conference on Very Large Data
Bases (VLDB 2006), pp. 679–690 (2006)

3. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal
of Data Semantics, 146–171 (2005)

4. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

5. He, B., Tao, T., Chang, K.C.C.: Clustering structured web sources: A schema-
based, model-differentiation approach. In: Proceedings of the joint of the 20th
International Conference on Data Engineering and 9th International Conference
on Extending Database Technology (ICDE/EDBT) Ph.D. Workshop, pp. 536–546
(2004)

6. He, B., Chang, K.C.C.: Statistical schema matching across web query interfaces.
In: Proceedings of the 22th ACM International Conference on Management of Data
(SIGMOD 2003), pp. 217–228 (2003)

7. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: Proceedings of
the 18th International Conference on Data Engineering (ICDE 2002), pp. 117–128
(2002)

8. He, B., Chang, K.C.C., Han, J.: Discovering complex matchings across web query
interfaces: a correlation mining approach. In: Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2004), pp. 148–157 (2004)

62 Z. He, J. Hong, and D. Bell

9. Wu, W., Yu, C.T., Doan, A., Meng, W.: An interactive clustering-based approach
to integrating source query interfaces on the deep web. In: Proceedings of the 23th
ACM International Conference on Management of Data (SIGMOD 2004), pp. 95–
106 (2004)

10. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB 2001), pp. 49–58 (2001)

11. Wang, J., Wen, J.R., Lochovsky, F.H., Ma, W.Y.: Instance-based schema matching
for web databases by domain-specific query probing. In: Proceedings of the 30th
International Conference on Very Large Data Bases (VLDB 2004), pp. 408–419
(2004)

12. Do, H.H., Rahm, E.: Coma - a system for flexible combination of schema matching
approaches. In: Proceedings of the 28th International Conference on Very Large
Data Bases (VLDB 2002), pp. 610–621 (2002)

13. Beneventano, D., Bergamaschi, S., Castano, S., Corni, A., Guidetti, R., Malvezzi,
G., Melchiori, M., Vincini, M.: Information integration: The momis project demon-
stration. In: Proceedings of the 26th International Conference on Very Large Data
Bases (VLDB 2000), pp. 611–614 (2000)

14. Castano, S., Antonellis, V.D., di Vimercati, S.D.C.: Global viewing of heteroge-
neous data sources. IEEE Transactions on Knowledge and Data Engineering 13(2),
277–297 (2001)

15. Doan, A., Domingos, P., Levy, A.Y.: Learning source description for data integra-
tion. In: Proceedings of the 3rd International Workshop on the Web and Databases
(WebDB 2000) (Informal Proceedings), pp. 81–86 (2000)

16. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data
sources: A machine-learning approach. In: Proceedings of the 20th ACM Inter-
national Conference on Management of Data (SIGMOD 2001), pp. 509–520 (2001)

17. Lowrance, J.D., Garvey, T.D.: Evidential reasoning: An developing concept. In:
Proceedings of the IEEE International Conference on Cybernetics and Society
(ICCS 1981), pp. 6–9 (1981)

18. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

19. Hall, P., Dowling, G.: Approximate string matching. Computing Surveys, 381–402
(1980)

20. Halevy, A.Y., Madhavan, J.: Corpus-Based Knowledge Representation. In: Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI
2003), pp. 1567–1572 (2003)

21. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence Workshop on Information Integration on the
Web (IIWeb 2003), pp. 73–78 (2003)

22. van Rijsbergen, C.J.: Information Retrival. Butterworths (1979)
23. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.Y.: Learning to

match ontologies on the semantic web. VLDB Journal 12(4), 303–319 (2003)

	Schema Matching across Query Interfaces on the Deep Web
	Introduction
	Dempster-Shafer Theory of Evidence (DS)
	Combining Multiple Matchers Using DS Theory
	Individual Matchers
	Interpreting Results from Individual Matchers
	Combining Mass Distributions from Multiple Matchers

	Resolving Conflicts between Attribute Correspondences
	Experimental Results
	Dataset
	Performance Metrics
	Discussion on Experimental Results

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

